
Lecture 8 - Angular Momentum
A Puzzle...

In computing the kinetic energy 1
2

m v2, the velocity term v2 is sometimes subtle. Suppose a particle moves with 

Cartesian coordinates x and y. Then the square of the particle’s speed equals 

v2 = 
ⅆx

ⅆt

2
+ 

ⅆy

ⅆt

2

(1)

1. What is the velocity in polar coordinates r and θ?

θ

r

x

y

2. Sometimes, we can work in strange coordinate systems (we call these generalized coordinates). For example, 

what is the velocity of the bottom mass m2 in the double pendulum shown below using θ1 and θ2 as the coordinates 

(in place of x and y)?

θ1

θ2

m1

m2

l1

l2

Solution

The secret to calculating v2 is to always decompose any motion into its x and y components.

1. In polar coordinates, x = r Cos[θ] and y = r Sin[θ] so that
ⅆx

ⅆt
=

ⅆr

ⅆt
Cos[θ] - r

ⅆθ

ⅆt
Sin[θ] (2)

ⅆy

ⅆt
=

ⅆr

ⅆt
Sin[θ] + r

ⅆθ

ⅆt
Cos[θ] (3)
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Therefore, 

v2 = 
ⅆx

ⅆt

2
+ 

ⅆy

ⅆt

2
= 

ⅆr

ⅆt

2
+ r2 

ⅆθ

ⅆt

2

(4)

In this case, ⅆr

ⅆt
 is the velocity in the radial direction, which is analogous to ⅆx

ⅆt
 or ⅆy

ⅆt
 but moves in the radial 

direction. r ⅆθ

ⅆt
 is the velocity in the polar direction; for example, a particle on a circle of radius r will travel in time 

t a distance ∫0
t
vθ ⅆ t = ∫0

t
r

ⅆθ

ⅆt
 ⅆ t = ∫0

t
r ⅆθ = r (θ[t] - θ[0]) which is the familiar length of the arc between the point 

(r, θ[t]) and (r, θ[0]). 

2. For the double pendulum, x = l1 Sin[θ1] + l2 Sin[θ2] and y = -l1 Cos[θ1] - l2 Cos[θ2] so that
ⅆx

ⅆt
= - l1

ⅆθ1

ⅆt
Cos[θ1] - l2

ⅆθ2

ⅆt
Cos[θ2] (5)

ⅆy

ⅆt
= l1

ⅆθ1

ⅆt
Sin[θ1] + l2

ⅆθ2

ⅆt
Sin[θ2] (6)

Therefore, 

v2 = l1
2

ⅆθ1

ⅆt

2
+ l2

2
ⅆθ2

ⅆt

2
+ 2 l1 l2

ⅆθ1

ⅆt

ⅆθ2

ⅆt
Cos[θ1 - θ2] (7)

This cross term, which is computed so naturally here, would be a pain to calculate by any other method. □ 

Angular Momentum

Basics

We define the angular momentum L about a point O as 

L ≡ r

⨯ p (8)

where r is the vector from O to the base of vector p. (Note the similarity between angular momentum and torque, 

τ

= r

⨯F, which is also defined about any point O where r is the vector from O to the base of vector F.)

Angular momentum on a mass m with momentum p = m v
 is related to its torque through

ⅆL

ⅆt
=

ⅆr


ⅆt
⨯ p+ r


⨯

ⅆp

ⅆt

= v

⨯(m v


) + r


⨯F

= r

⨯F

= τ

(9)

Therefore, when the net torque on a particle equals zero, its angular momentum is conserved.

If the angular momentum is changing over time, ⅆL

ⅆt
≠ 0, there are two possible causes: L either changes in magni-

tude or in direction (or both). If we define L = L L

 then when L changes we either change L or L


 (or both).

In this course, we will deal primarily with the case where L changes but L

 remains static. An example of such a 

case is when you ride a carousel and your friends comes by and gives you a push, spinning you around even faster. 

These types of problems are particularly simple because we can essentially forget that L is a vector and only deal 

with its magnitude L.

To get a qualitative feel for the second case when L

 changes, let’s consider the parallel situation with Newton’s 

2nd law F =
ⅆp

ⅆt
. Writing p = p p

 , the quantity ⅆp

ⅆt
 can change in two different ways: (1) the magnitude p can 

change while keeping the direction p  constant (e.g., when an object accelerates in a line; in such cases, we can 

usually drop the vectors and simply write F = m a along this line). Alternatively, (2) the direction p  can change 

while keeping p constant (e.g., uniform circular motion; which gives rise to the centripetal acceleration F =
m v2

r
). 
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The case where p  changes is often significantly more complicated. Similarly, in cases where L

 changes, the 

dynamics can easily make your head spin!

Math Recap: Matrix Determinants

Recall that a useful pneumonic for the cross product is through the matrix determinant

r

⨯ p =

x


y


z


rx ry rz

px py pz

(10)

The determinant of a 2⨯2 matrix is given by


a b

c d
 = a d- b c (11)

and that the determinant of a 3⨯3 matrix is given by expansion by minors,
a b c

d e f

g h i

= a 
e f

h i
- b 

d f

g i
+ c 

d e

g h


= a e i- a f h- b d i+ b f g+ c d h- c e g

(12)

Therefore, the angular momentum is given by 

L = r

⨯ p

= (ry pz - rz py) x

- (rx pz - rz px) y


+ (rx py - ry px) z

 (13)

Computing Angular Momentum

Example

A particle with mass m is undergoing uniform circular motion with velocity v. What is its angular momentum as it 

moves around the circle?

Solution

In uniform circular motion, r is perpendicular to v, and therefore 

L = r

⨯ p

= m r

⨯v



= m r v

(14)

This statement holds for every point along the particle’s circular motion, and therefore L = m r v is constant 

throughout the particle’s circular motion. The direction of L is also constant, and by the property of the cross 

product it remains perpendicular to the plane defined by r and v.

Another way to compute L is by writing out the Cartesian coordinates of r and v and then explicitly taking the 
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 way  compute  by writing  explicitly taking

cross product. Note that in time t the angle of the mass changes by v

r
t. Align the x- and y-axes to point along r and 

v
 at t = 0 so that

r

= r Cos v

r
t, r Sin v

r
t, 0 (15)

v

= -v Sin v

r
t, v Cos v

r
t, 0 (16)

We can now directly compute L = m r

⨯v

= m r v z

, which is indeed constant throughout the particle’s motion. □ 

Example

A mass m is twirled in a circle of radius r1 with a constant speed v1. If the string is pulled so that the mass moves 

in a circle of radius r2, what is the new velocity v2 and angular velocity ω2?

Solution

When the mass is circling with radius r1, the inwards tension force T is what provides the centripetal acceleration. 

When this tension force is changed to bring the particles to r2, its corresponding torque about the center of the 

particle’s circular motion equals τ = r

⨯T = 0 because r and T are parallel. Therefore, ⅆL

ⅆt
= τ

= 0 and angular 

momentum is conserved.

As we found above, the angular momentum of a mass m traveling in a circle of radius r1 with velocity v1 has 

magnitude L = m r1 v1. The vector L will point in the direction r1⨯v


1, which must be the same direction as r2⨯v


2 

since angular momentum is conserved. The magnitude of the angular momentum when the particle travels in a 

circle of radius r2 with velocity v2 equals L = m r2 v2. Equating the angular momentum, we find r1 v1 = r2 v2 or 

v2 =
r1

r2
v1 (17)

Hence if r2 < r1 then v2 > v1, so that the velocity increases as the radius decreases. Conversely, if r2 > r1 and the 

radius increases, the velocity will decrease. The initial angular velocity equals ω1 =
v1

r1
 while the final angular 

velocity equals ω2 =
v2

r2
=

r1

r2
2 v1 = 

r1

r2

2
ω1 and therefore depends on the ratios of the radii squared. □ 

Example

A cannon shoots a projectile with velocity v0 at angle θ. Is angular momentum relative to the cannon conserved? 

Why?

4     Lecture 8 - 2017-10-23.nb

Printed by Wolfram Mathematica Student Edition



t

x


y


v


r


⊗
0.0 0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

0.4

0.5
2D Projectile Motion

Solution

We write the velocity and position of the projectile as

v

= 〈v0 Cos[θ], v0 Sin[θ] - g t〉 (18)

r

= v0 t Cos[θ], v0 t Sin[θ] - 1

2
g t2 (19)

At t = 0, r = 〈0, 0〉 so that the angular momentum L = r

⨯ p = 0 (note that to carry out these cross products, we 

assume that all vectors have a 0 component in the z-direction).

At a later time t, we can visually see from the motion that L ≠ 0. Formally, we can calculate 

L = m r

⨯v

= -

1
2

m g v0 Cos[θ] t2 z
 showing that the particle has angular momentum pointing into the page (we 

always use a right-handed coordinate system!)

Where does this angular momentum come from? It must come from the only other force in this problem: gravity. 

Indeed, the gravitational force m g = 〈0, -m g〉 creates a torque about r which equals τ = r

⨯F = -m g t v0 Cos[θ] z

. 

Since τ = ⅆL

ⅆt
, we can integrate the torque to find L = ∫ τ


ⅆ t up to a constant which will be determined by L = 0 at 

t = 0. Integrating, 

L = ∫ τ ⅆ t

= ∫ -m g t v0 Cos[θ] z

ⅆ t

= -m g v0 Cos[θ] z

∫ t ⅆ t

= -
1
2

m g v0 Cos[θ] t2 z

+C

(20)

where t = 0 shows that C = 0. Thus, we have confirmed that the gravitational force is responsible for the non-zero 

angular momentum of the particle. □ 

Swinging Your Arms

Example

You are standing on the edge of a step on some stairs, facing up the stairs. You feel yourself starting to fall 

backwards, so you start swinging your arms around in vertical circles, like a windmill. This is what people tend to 

do in such a situation, but does it actually help you not to fall, or does it simply make you look silly? Explain your 

reasoning.

Solution

Yes, swinging your arms, especially in a circular motion, helps you from rotating in the air. If you are starting to 
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 swinging your  especially  helps you  rotating  you  starting

fall backwards, then your angular momentum (using your feet as the base point) points to your right. Circling your 

arms forward creates an angular momentum leftwards, which will help slow your rotation. The moral of the story: 

trust your instincts! □ 

Modern Research

This fantastic YouTube describes how toy models still exhibit very strange phenomena that we don’t understand. 

The one calculation that is done requires moment of inertia, which we will learn about next time.

Advanced Section: Particle under Radial Force

Mathematica Initialization
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